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Motivation

® Forecasting genesis and
intensification of tropical
cyclones remains challenging

® Track forecasts vastly improved
(Franklin, 2007), skill of
forecasting intensity static

Improvements made in forecasts

of other systems (Hawlblitzel et
al, 2007)

® Data assimilation as a solution
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® Combines all available o
. . . GFS (blue) & 4.5-km WRF (red) forecast: No forecast initialized with
information optlmally to best GFS FNL analysis ev 6hr from 00Z 12 to 00Z |3 predicts rapid

estimate state of atmosphere formation

Past studies (Zhang, 2005)
indicate initial condition
accuracy one key to capturing
small, mesoscale features




Ensemble Kalman Filter

® Based on linear
statistical assumptions

® All errors assumed
to be Gaussian

® Lack of computing

power prevents full
solution of non-
linear systems

® EnKF equations
( | ) X, =X, + K[y, —H(X,)] Estimate of analysis

(2) K =BH’ (HBHT + R)_1 Kalman gain matrix

(3) Z(X - X))y, —y) Covariance calculation




Why the EnKF?

® 3DVAR (used at NCEP)

® Uses a mostly static, isotropic background error covariance
function

® 4DVAR (used for the ECMWF)
® Equivalent to EnKF for linear cases

® Ensemble Kalman filter

® No adjoint model necessary (computationally efficient)

® Dynamic background covariance

® Background covariances estimated directly from ensemble and
can capture non-linear dynamics

® Covariance structures evolve anisotropically according to
dynamics of system

® Coherent structures most prominent in areas of moist
convection, strong PV gradients (Zhang, 2005)




Model Setup
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WRF model used in study of
Hurricane Humberto

3 model domains with two
way nesting

OOUTC [2 September GFS
operational analysis used to
create initial boundary
conditions
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Ensemble size set at 30
members




Radar Obs Assimilation

KHGX base Vr EnKF Analysis Mean Pure EF Mean w/o EnKF

09Z/12

182/12

03Z/13

Radial velocities: Blues indicate winds toward the radar, reds indicate winds away from
the radar




Radar Obs Assimilation
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Min SLP (hPa) Max WSP (m/s)

Forecasts initialized with EnKF analyses captured rapid cyclone
deepening




WRF/3DVAR vs.WRF/EnKF

15(::1) Minimum SLP (hPa) ; (b) Maximum surface wind (m/s)
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WRF/3DVAR fails to capture rapid intensification of
tropical cyclone




Methods

Analysis performed at 0900 UTC on September |3 (at
the time of landfall calculated by WRF ensemble)

Statistical moments averaged across spatial domains
® Three domains (252x252,51x51,21x21)

® Average taken at each vertical layer of domain (I through |5
km)

Will quantify non-Gaussianity of distribution and
determine whether it affects performance of EnKF

Superobs’ effectiveness in reducing non-Gaussianity
explored




of a Tropical Cyclone
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Ensemble Mean Mix n
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Summary and Conclusions

Current numerical models often fail to capture rapid genesis of
extreme weather events

EnKF allows flow dependent covariance calculations

EnKF analysis and deterministic forecasts able to capture some of
Humberto’s rapid intensification

Non-Gaussianity has potential to degrade EnKF updates

® Non-Gaussianity shown to be most severe in areas of moist
dynamics and intense convection

Superobbing shows potential to perform well operationally and
reduce non-Gaussianity

Storm-centered assimilation schemes provide potential for better
representation of intense mesoscale events

® C(Covariances better able to be calculated near storm center




